Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 31(19): 195601, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30848247

RESUMO

X-ray absorption spectroscopy (XAS) is performed to study changes in the electronic structures of colossal magnetoresistance (CMR) and charged ordered (CO) La1-x Ca x MnO3 manganites with respect to temperature. The pre-edge features in O and Mn K-edge XAS spectra, which are highly sensitive to the local distortion of MnO6 octahedral, exhibit contrasting temperature dependence between CMR and CO samples. The seemingly counter-intuitive XAS temperature dependence can be reconciled in the context of polarons. These results help identify the most relevant orbital states associated with polarons and highlight the crucial role played by polarons in understanding the electronic structures of manganites.

2.
Phys Rev Lett ; 119(10): 107204, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949160

RESUMO

Ultrafast x-ray scattering studies of the topological Skyrmion phase in Cu_{2}OSeO_{3} show the dynamics to be strongly dependent on the excitation energy and fluence. At high photon energies, where the electron-spin scattering cross section is relatively high, the excitation of the topological Skyrmion phase shows a nonlinear dependence on the excitation fluence, in contrast to the excitation of the conical phase which is linearly dependent on the excitation fluence. The excitation of the Skyrmion order parameter is nonlinear in the magnetic excitation resulting from scattering during electron-hole recombination, indicating different dominant scattering processes in the conical and Skyrmion phases.

3.
Sci Rep ; 5: 16690, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26573394

RESUMO

Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2Cu3O7-x (YBCO) superconductor when it is grown on top of ferromagnetic La0.7Ca0.3MnO3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO2 but not with La0.7Ca0.3O interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2 plane at the La0.7Ca0.3O and MnO2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.

4.
Phys Rev Lett ; 112(16): 167202, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815665

RESUMO

We report the observation of a Skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct Skyrmion sublattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals. The Skyrmion sublattices are rotated with respect to each other, implying a long wavelength modulation of the lattice. The modulation vector is controlled with an applied magnetic field, associating this moirélike phase with a continuous phase transition. Our findings will open up a new class of science involving manipulation of quantum topological states.

5.
Sci Rep ; 4: 4050, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522173

RESUMO

Electronic orderings of charges, orbitals and spins are observed in many strongly correlated electron materials, and revealing their dynamics is a critical step toward undertsanding the underlying physics of important emergent phenomena. Here we use time-resolved resonant soft x-ray scattering spectroscopy to probe the dynamics of antiferromagnetic spin ordering in the manganite Pr0.7Ca0.3MnO3 following ultrafast photo-exitation. Our studies reveal a glass-like recovery of the spin ordering and a crossover in the dimensionality of the restoring interaction from quasi-1D at low pump fluence to 3D at high pump fluence. This behavior arises from the metastable state created by photo-excitation, a state characterized by spin disordered metallic droplets within the larger charge- and spin-ordered insulating domains. Comparison with time-resolved resistivity measurements suggests that the collapse of spin ordering is correlated with the insulator-to-metal transition, but the recovery of the insulating phase does not depend on the re-establishment of the spin ordering.

6.
Nat Commun ; 4: 2643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24153394

RESUMO

Self-organized electronically ordered phases are a recurring feature in correlated materials, resulting in, for example, fluctuating charge stripes whose role in high-TC superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here we reveal ultrafast charge localization and lattice vibrational coupling as dynamic precursors of stripe formation in the model compound La(1.75)Sr(0.25)NiO4, using ultrafast and equilibrium mid-infrared spectroscopy. The opening of a pseudogap at a crossover temperature T* far above long-range stripe formation establishes the onset of electronic localization, which is accompanied by an enhanced Fano asymmetry of Ni-O stretch vibrations. Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous modulation of electron-phonon coupling and charge localization. These results illuminate the role of localization in forming the pseudogap in nickelates, opening a path to understanding this mysterious phase in a broad class of complex oxides.

7.
Phys Rev Lett ; 110(12): 127404, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166848

RESUMO

We investigate the order parameter dynamics of the stripe-ordered nickelate, La(1.75)Sr(0.25)NiO(4), using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.

8.
Nat Commun ; 3: 838, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22588300

RESUMO

The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

9.
Phys Rev Lett ; 109(24): 247204, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368372

RESUMO

We study the magnetic excitations of itinerant helimagnets by applying time-resolved optical spectroscopy to Fe(0.8)Co(0.2)Si. Optically excited oscillations of the magnetization in the helical state are found to disperse to lower frequency as the applied magnetic field is increased; the fingerprint of collective modes unique to helimagnets, known as helimagnons. The use of time-resolved spectroscopy allows us to address the fundamental magnetic relaxation processes by directly measuring the Gilbert damping, revealing the versatility of spin dynamics in chiral magnets.

10.
Phys Rev Lett ; 106(18): 186404, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635110

RESUMO

We present resonant soft x-ray scattering results from small bandwidth manganites (Pr,Ca)MnO(3), which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic state and CE-type ordering.

11.
Nat Mater ; 6(9): 643-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694062

RESUMO

Photo-excitation can drive strongly correlated electron insulators into competing conducting phases, resulting in giant and ultrafast changes of their electronic and magnetic properties. The underlying non-equilibrium dynamics involve many degrees of freedom at once, whereby sufficiently short optical pulses can trigger the corresponding collective modes of the solid along temporally coherent pathways. The characteristic frequencies of these modes range between the few GHz of acoustic vibrations to the tens or even hundreds of THz for purely electronic excitations. Virtually all experiments so far have used 100 fs or longer pulses, detecting only comparatively slow lattice dynamics. Here, we use sub-10-fs optical pulses to study the photo-induced insulator-metal transition in the magnetoresistive manganite Pr(0.7)Ca(0.3)MnO(3). At room temperature, we find that the time-dependent pathway towards the metallic phase is accompanied by coherent 31 THz oscillations of the optical reflectivity, significantly faster than all lattice vibrations. These high-frequency oscillations are suggestive of coherent orbital waves, crystal-field excitations triggered here by impulsive stimulated Raman scattering. Orbital waves are likely to be initially localized to the small polarons of this room-temperature manganite, coupling to other degrees of freedom at longer times, as photo-domains coalesce into a metallic phase.

12.
Phys Rev Lett ; 97(7): 074802, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026236

RESUMO

We report the first observation of laser seeding of the storage-ring microbunching instability. Above a threshold bunch current, the interaction of the beam and its radiation results in a coherent instability, observed as a series of stochastic bursts of coherent synchrotron radiation (CSR) at terahertz frequencies initiated by fluctuations in the beam density. We have observed that this effect can be seeded by imprinting an initial density modulation on the beam by means of laser "slicing." In such a situation, most of the bursts of CSR become synchronous with the pulses of the modulating laser and their average intensity scales exponentially with the current per bunch. We present detailed experimental observations of the seeding effect and a model of the phenomenon. This seeding mechanism also creates potential applications as a high-power source of CSR at terahertz frequencies.

13.
Nature ; 442(7103): 664-6, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16900195

RESUMO

In condensed matter, light propagation near resonances is described in terms of polaritons, electro-mechanical excitations in which the time-dependent electric field is coupled to the oscillation of charged masses. This description underpins our understanding of the macroscopic optical properties of solids, liquids and plasmas, as well as of their dispersion with frequency. In ferroelectric materials, terahertz radiation propagates by driving infrared-active lattice vibrations, resulting in phonon-polariton waves. Electro-optic sampling with femtosecond optical pulses can measure the time-dependent electrical polarization, providing a phase-sensitive analogue to optical Raman scattering. Here we use femtosecond time-resolved X-ray diffraction, a phase-sensitive analogue to inelastic X-ray scattering, to measure the corresponding displacements of ions in ferroelectric lithium tantalate, LiTaO(3). Amplitude and phase of all degrees of freedom in a light field are thus directly measured in the time domain. Notably, extension of other X-ray techniques to the femtosecond timescale (for example, magnetic or anomalous scattering) would allow for studies in complex systems, where electric fields couple to multiple degrees of freedom.

14.
Phys Rev Lett ; 96(16): 164801, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712239

RESUMO

We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

15.
Phys Rev Lett ; 95(6): 067405, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16090991

RESUMO

We report on the first demonstration of femtosecond x-ray absorption spectroscopy, made uniquely possible by the use of broadly tunable bending-magnet radiation from "laser-sliced" electron bunches within a synchrotron storage ring. We measure the femtosecond electronic rearrangements that occur during the photoinduced insulator-metal phase transition in VO2. Symmetry- and element-specific x-ray absorption from V2p and O1s core levels (near 500 eV) separately measures the filling dynamics of differently hybridized V3d-O2p electronic bands near the Fermi level.

16.
Phys Rev Lett ; 90(23): 236102, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12857274

RESUMO

Core-level photoemission spectroscopy provides a local probe of expansion dynamics and associated transient chemical properties as a highly pressurized, metallic fluid expands into vacuum following impulsive heating of a semiconductor by an intense, ultrashort laser pulse. Transient photoemission peak shifts reveal that metal-insulator transitions occur rapidly following laser heating. These experiments probe constituents species and solidification kinetics occurring in the early moments of material ejection and provide insight into how particles arise in the current laser ablation regime.

17.
Science ; 266(5184): 422-4, 1994 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-7939680

RESUMO

Femtosecond pump-probe experiments reveal the impulsive production of photoproduct in the primary event in vision. The retinal chromophore of rhodopsin was excited with a 35-femtosecond pulse at 500 nanometers, and transient changes in absorption were measured with 10-femtosecond probe pulses. At probe wavelengths within the photo-product absorption band, oscillatory features with a period of 550 femtoseconds (60 wavenumbers) were observed whose phase and amplitude demonstrate that they are the result of nonstationary vibrational motion in the ground state of the photoproduct. The observation of coherent vibrational motion of the photoproduct supports the idea that the primary step in vision is a vibrationally coherent process and that the high quantum yield of the cis-->trans isomerization in rhodopsin is a consequence of the extreme speed of the excited-state torsional motion.


Assuntos
Luz , Rodopsina/química , Visão Ocular/fisiologia , Animais , Bovinos , Análise de Fourier , Isomerismo , Modelos Moleculares , Estimulação Luminosa , Fotoquímica , Rodopsina/análogos & derivados , Análise Espectral
18.
Proc Natl Acad Sci U S A ; 90(24): 11762-6, 1993 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-8265623

RESUMO

Femtosecond transient absorption measurements of the cis-trans isomerization of the visual pigment rhodopsin clarify the interpretation of the dynamics of the first step in vision. We present femtosecond time-resolved spectra as well as kinetic measurements at specific wavelengths between 490 and 670 nm using 10-fs probe pulses centered at 500 and 620 nm following a 35-fs pump pulse at 500 nm. The expanded spectral window beyond that available (500-570 nm) in our previous study [Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. (1991) Science 254, 412-415] provides the full differential absorption spectrum of the photoproduct as a function of delay time after photolysis. The high time-resolution data presented here contradict an alternative interpretation of the rhodopsin photochemistry offered by Callender and co-workers [Yan, M., Manor, D., Weng, G., Chao, H., Rothberg, L., Jedju, T. M., Alfano, R. R. & Callender, R. H. (1991) Proc. Natl. Acad. Sci. USA 88, 9809-9812]. Our results confirm that the red-shifted (lambda max approximately 570 nm) photo-product of the isomerization reaction is fully formed within 200 fs. Subsequent changes in the differential spectra between 200 fs and 6 ps are attributed to a combination of dynamic ground-state processes such as intramolecular vibrational energy redistribution, vibrational cooling, and conformational relaxation.


Assuntos
Percepção de Cores/fisiologia , Visão Ocular/fisiologia , Humanos , Cinética , Rodopsina/química , Rodopsina/metabolismo , Espectrofotometria , Fatores de Tempo
19.
Science ; 254(5030): 412-5, 1991 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-1925597

RESUMO

The kinetics of the primary event in vision have been resolved with the use of femtosecond optical measurement techniques. The 11-cis retinal prosthetic group of rhodopsin is excited with a 35-femtosecond pump pulse at 500 nanometers, and the transient changes in absorption are measured between 450 and 580 nanometers with a 10-femtosecond probe pulse. Within 200 femtoseconds, an increased absorption is observed between 540 and 580 nanometers, indicating the formation of photoproduct on this time scale. These measurements demonstrate that the first step in vision, the 11-cis----11-trans torsional isomerization of the rhodopsin chromophore, is essentially complete in only 200 femtoseconds.


Assuntos
Rodopsina/química , Rodopsina/efeitos da radiação , Animais , Lasers , Luz , Fotoquímica , Espectrofotometria , Estereoisomerismo , Fatores de Tempo , Visão Ocular/fisiologia
20.
Arch Ophthalmol ; 107(4): 587-92, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2705929

RESUMO

We produced corneal excisions with nanosecond (ns)-, picosecond-, and femtosecond (fs)-pulsed lasers at visible wavelengths. The threshold energy for ablation was proportional to the square root of the pulse duration and varied from 2.5 microjoules (microJ) at 100 fs to 500 microJ at 8 ns. Excisions made with picosecond and femtosecond lasers was ultrastructurally superior to those made with nanosecond lasers and, at pulse energies near threshold, showed almost as little tissue damage as excisions made with excimer lasers at 193 nm. We conclude that ultrashort-pulsed lasers at visible and near-infrared wavelengths are a possible alternative to excimer lasers for corneal surgery and might have advantages over conventional ophthalmic neodymium-YAG lasers for some intraocular applications.


Assuntos
Córnea/cirurgia , Terapia a Laser , Animais , Bovinos , Córnea/patologia , Córnea/ultraestrutura , Microscopia Eletrônica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...